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Abstract Plants have many natural properties that make
them ideally suited to clean up polluted soil, water, and
air, in a process called phytoremediation. We are in the
early stages of testing genetic engineering-based phyto-
remediation strategies for elemental pollutants like
mercury and arsenic using the model plant Arabidopsis.
The long-term goal is to develop and test vigorous, field-
adapted plant species that can prevent elemental pollu-
tants from entering the food-chain by extracting them to
aboveground tissues, where they can be managed. To
achieve this goal for arsenic and mercury, and pave the
way for the remediation of other challenging elemental
pollutants like lead or radionucleides, research and
development on native hyperaccumulators and engi-
neered model plants needs to proceed in at least eight
focus areas: (1) Plant tolerance to toxic elementals is
essential if plant roots are to penetrate and extract
pollutants efficiently from heterogeneous contaminated
soils. Only the roots of mercury- and arsenic-tolerant
plants efficiently contact substrates heavily contami-
nated with these elements. (2) Plants alter their
rhizosphere by secreting various enzymes and small
molecules, and by adjusting pH in order to enhance
extraction of both essential nutrients and toxic elements.
Acidification favors greater mobility and uptake of
mercury and arsenic. (3) Short distance transport
systems for nutrients in roots and root hairs requires
numerous endogenous transporters. It is likely that root
plasma membrane transporters for iron, copper, zinc,
and phosphate take up ionic mercuric ions and arsenate.
(4) The electrochemical state and chemical speciation of

elemental pollutants can enhance their mobility from
roots up to shoots. Initial data suggest that elemental
and ionic mercury and the oxyanion arsenate will be the
most mobile species of these two toxic elements. (5) The
long-distance transport of nutrients requires efficient
xylem loading in roots, movement through the xylem up
to leaves, and efficient xylem unloading aboveground.
These systems can be enhanced for the movement of
arsenic and mercury. (6) Aboveground control over the
electrochemical state and chemical speciation of
elemental pollutants will maximize their storage in
leaves, stems, and vascular tissues. Our research suggests
ionic Hg(II) and arsenite will be the best chemical spe-
cies to trap aboveground. (7) Chemical sinks can
increase the storage capacity for essential nutrients like
iron, zinc, copper, sulfate, and phosphate. Organic acids
and thiol-rich chelators are among the important
chemical sinks that could trap maximal levels of mercury
and arsenic aboveground. (8) Physical sinks such as
subcellular vacuoles, epidermal trichome cells, and dead
vascular elements have shown the evolutionary capacity
to store large quantities of a few toxic pollutants
aboveground in various native hyperaccumulators.
Specific plant transporters may already recognize
gluthione conjugates of Hg(II) or arsenite and pump
them into vacuole.
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Introduction

Numerous toxic pollutants have reached unacceptably
high levels in the environment due to industrial, defense,
agricultural, and municipal processes, and adversely
affect the health of millions of people worldwide [48, 88,
132]. Elemental pollutants are particularly difficult to
remediate from soil, water, and air because, unlike
organic pollutants that can be degraded to harmless
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small molecules, toxic elements such as mercury, arsenic,
cadmium, lead, copper, and zinc, are immutable by all
biochemical reactions [24, 66, 78]. The practical goal of
most phytoremediation research on elemental pollutants
is to extract these soil- and sediment-borne contami-
nants, transport them aboveground, and concentrate
them by orders of magnitude for reprocessing. Plants
can assist with the cleanup of surface water contami-
nated with elemental pollutants, or be used in conjunc-
tion with pump and treat schemes for contaminants
located deeper in the water table. Phytoremediation has
obvious advantages over physical remediation such as
excavation and contained reburial, which relocates the
problem, or capping, which postpones the problem.
Plants could both support and amend bacterial reme-
diation schemes for elemental pollutants, because of
their ability to enhance rhizosphere activity and extract
pollutants aboveground. Finally, plants can be applied
to the remediation of a variety of air-borne contami-
nants, because of their natural capacity to extract
nutrients like carbon, sulfur, and nitrogen from the air.
First, the advantages of using phytoremediation strate-
gies to clean up the environment will be briefly reviewed,
then discussing the various plant-based mechanisms on
which phytoremediation research and development is
concentrated are discussed.

Advantages of using plants to clean the environment

Plants have evolved several properties that give them
specific advantages for use in environmental remediation
schemes [78–80]: (1) Plants have roots and root hairs
that create an enormous surface area through which
pollutants can be extracted from contaminated soil and
water. (2) Plants are autotrophs and, as such, take up
nearly all their elemental nutrients directly from the
environment. In particular, plants use their roots to
extract around 14 elemental nutrients from the soil (e.g.,
B, Cl, Cu, Ca, Fe, K, Mg, Mn, Mo, N, Ni, P, S, Se, Zn)
[44, 45, 76, 103]. They use their leaves to extract CO2 and
other gases and nutrients from air and rainwater. (3) In
some ecosystems, one or a few plant species control
more than 80% of the energy [95]. Remediation efforts
can thus focus on the genetic capabilities of one or a few
dominant plant species to power the entire remediation
process. In contrast, most single microbial species are
minor components in a complex ecosystem and require
energy and carbon sources. (4) The release of genetically
modified plants (GMPs), and release of pollen and seed
from these GMPs, can be controlled more easily than
the release of genetically modified bacteria. Physical
control over the spread of GMP germplasm could be
supplemented by genetic systems of plant sterility.
Embryo lethality, male sterility, and apomixis have been
suggested as ways to control the unwanted spread of
transgenes into native populations [25]. However, what
is needed for the best containment is complete steril-
ity—a genetic block that will prevent both male and

female development. With complete plant sterility, pol-
len cannot pass from the GMP to native plants to pro-
duce seed, nor can native pollen successfully pollinate
the GMP and produce viable seed. Our laboratory has
recently examined several systems of engineered com-
plete sterility that allowed normal vegetative plant
growth, and that would be applicable to a wide variety
of plant species (L.C. Pawloski and R.B. Meagher,
unpublished observations). One new system in particu-
lar, which targets vitamin biosynthesis in male and
female organs, appears to be very efficient at producing
complete sterility without hindering vegetative plant
growth (T. Kim and R.B. Meagher, unpublished
observations). We hope to have this system for complete
plant sterility fully tested in model plants and available
for applications in field-adapted species within the next
2 years. (5) It has been suggested that phytoremediation
schemes are much cheaper than physical methods, such
as excavation and reburial or pump and treat systems,
for remediating large quantities of soil or water,
respectively [22, 23, 125]. It is likely that phytoremedi-
ation technologies can be extended to deal with air
pollution [56, 85]. It is also likely that evidence of
phytoremediation providing lower cost for a complete
cleanup of an element contaminated site will be forth-
coming [60]. (6) Plants secrete fixed carbon compounds
into the soil and support necessary bacterial and fungal
growth, which may be essential to a recovering ecosys-
tem and may be required for the remediation of many
pollutants (see below). (7) Plants are aesthetically
pleasing and hence, a well-planted site in the process of
being remediated will garner strong public support.

Phytoremediation of elemental vs organic pollutants

The following discussions are intended to be generally
applicable to all areas of phytoremediation research, but
a particular emphasis will be placed on strategies for
phytoremediation of elemental pollutants, as distin-
guished from phytoremediation of organic pollutants
[78]. Organic pollutants include thousands of toxic
chemicals such as benzene, benzo(a)pyrene, polychlori-
nated biphenyls, trichloroethylene (TCE), trinitro-
toluene (TNT), and dichlorodiphenyltrichloroethane.
Phytoremediation of organic pollutants can have the
logical goal of completely mineralizing the toxicant to
harmless products and hence, once successful, has few, if
any drawbacks. Native plants have some exceptional
natural abilities to degrade organic pollutants, and there
have been several reports of plants engineered for
phytoremediation of organics dealing principally with
the chlorinated solvent TCE [32] and the explosive TNT
[41, 50]. There will be no further discussion of these
catabolic pathways in this article. In contrast to organic
pollutants, elemental pollutants include heavy metals,
metalloids, and radionucleides (e.g., mercury, lead,
cadmium, arsenic, technetium, tritium, and deuterium).
Elements are immutable short of nuclear fission or
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fusion and, thus, cannot be mineralized. Plants can be
used to manage elemental pollutants, a process that
includes extracting, sequestering, and transforming them
to less toxic chemical species, but again the elemental
pollutants themselves will remain. Hence, plants used for
the phytoremediation of elemental pollutants will need
to be managed more intensely than those degrading
organic pollutants. Although some exotic native plants
have exceptional phytoremediation capabilities for ele-
mental pollutants [33], most are small and slow growing
or exotic in their habitats, limiting their potential for
large-scale commercial remediation of polluted sites
[6, 124]. High biomass producing plants, genetically
engineered for the phytoremediation of elemental pol-
lutants, have been considered as commercially applica-
ble to a wider variety of elemental pollutants and sites
[78]. However, research on engineered phytoremediation
is still in its infancy, and a better understanding of
natural hyperaccumulators will be a tremendous aid in
our understanding of which genes and which cellular
and organismal processes are needed. Furthermore, soil
bacteria, which have evolved many genes that direct the
aggressive transformation or management of elemental
pollutants, have much to contribute to phytoremedia-
tion schemes.

Strategies for phytoremediation of toxic elements: eight
focus areas for research and technology development

Our long-term goal is to develop and test highly pro-
ductive, field-adapted plant species that clean up toxic
elements from polluted sites. We will, in the long run,
need to engineer fast-growing grasses, shrubs, and trees
that control the uptake, chemical speciation, electro-

chemical state, and aboveground binding of toxic ele-
ments. Initially, our experimental approach is to
examine individual genes and mechanisms that might
drive phytoremediation in model plants like Arabidopsis
and tobacco. Once we have well-characterized pheno-
types for individual transgenes and combinations of
appropriate genes in model plants, these genes can be
moved into field-adapted species for testing. To give
immediate direction to our research on these mecha-
nisms we have dissected the processes required for the
phytoremediation of elemental pollutants into several
focus areas for research and development. Figure 1
outlines suggested foci for basic research and technology
development likely to advance the field of phytoreme-
diation. The following plant and bacterial activities need
to be understood in natural hyperaccumulators and can
be enhanced in plants engineered for phytoremediation.
(1) High level tolerance to toxic elements is essential if
plant roots are to penetrate and extract these pollutants
from heterogeneous, contaminated soils. (2) Plants help
create their own rhizosphere by secreting various en-
zymes and small molecules, and by adjusting soil pH.
These activities, in turn, enhance uptake of nutrients and
toxic elements. For example, acidification of the soil
would increase mercury and arsenic mobility in soil and
favor uptake. (3) The uptake and short distance trans-
port of nutrients in plant roots and root hairs requires
the expression of numerous membrane transporters.
These activities are essential for extracting toxic ele-
ments from soil and water. For example, we predict that
iron, copper, or zinc transporters may bring in mercury.
Likewise, sulfate and phosphate transporters may bring
in selenate and arsenate, respectively. (4) Transforma-
tion of some toxic elements to different electrochemical
states or chemical species is necessary to increase their
rate of transport. For example, our initial data suggest
that elemental mercury [Hg(0)] ionic mercury Hg(II) and
arsenate are more mobile in plants. (5) Xylem transport
up the vascular system of the plant and distribution via
the phloem is an important part of nutrient manage-
ment, but xylem transport is poorly defined at the ge-
netic level. We hope to enhance such activities as xylem
loading in roots and unloading in leaves for elemental
pollutants. (6) Many elements would be best stored
aboveground in a different electrochemical state or as a
different chemical species than that which is best trans-
ported. For example, Hg(II) and arsenite can be stored
in complexes with thiol-containing peptides and pro-
teins. (7) Chemical sinks, such as organic acid chelators,
amino acids, and thiol-reactive peptides, can bind toxic
elements and can increase the total concentration of
elements aboveground. (8) Physical sinks are needed for
the high level storage of elemental pollutants above-
ground. These physical storage areas might include
vacuoles, trichomes, and dead vascular elements. For
example, the transport of peptide metal/metalloid com-
plexes into the vacuole for storage could be enhanced by
overexpressing the appropriate glutathione conjugate
pumps in leaves.

Fig. 1 Focus areas for phytoremediation research and develop-
ment (see text for details)
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This review will briefly summarize each of the eight
focus areas and give examples of how they might be
applied to improve strategies for the phytoremediation
of mercury and arsenic. A few parts of this hypothesis
are already being tested for the management of mercury
and arsenic by examining different transgenes in model
plants. Research on each new class of transgene exam-
ined in a model plant reveals new mechanisms of ele-
ment management. In many cases, these same or related
basic mechanisms need to be explored in natural plant
hyperaccumulators in order to understand naturally
evolved endogenous mechanisms of managing elemental
pollutants. Furthermore, research on phytoremediation
is in its infancy and only a few percent of all the easily
assessable genes and mechanisms have been examined,
and these only at a minimal level [20].

Plant tolerance to toxic elements is essential to all
aspects of a phytoremediation strategy

Plants must not only be able to grow vigorously on sites
polluted with elemental toxins, but they must have tol-
erance to these toxins so that their roots do not avoid
hot spots in soils or sediments containing the highest
levels of these pollutants. Roots are highly and positively
chemotactic toward water and nutrients; this response
can be even stronger than the gravitropic response [26,
119]. Conversely, we find that without high-level resis-
tance, wild-type plant roots will grow away from toxins

such as the natural mineral HgS [56]. In addition, leaves
must be able to function with their full photosynthetic
potential even when loaded with toxic pollutants, or one
of the primary benefits of plants to the remediation
process, the fact that they are photosynthetic auto-
trophs, is lost. Initial efforts at engineering plants to
remediate mercury and arsenic have focused heavily on
cellular resistance mechanisms, because only healthy
plants will efficiently extract these toxicants and process
them appropriately.

Arabidopsis and some larger plant species, such as
tobacco, canola, cottonwood, and yellow poplar, engi-
neered to use particular tolerance genes can take up and
process levels of mercury and/or arsenic several times
higher than would kill most plant species. For example,
modified plants expressing the bacterial merB gene
encoding bacterial organomercury lyase cleave the most
toxic and biomagnified form of mercury, methylmercury
(CH3Hg+) to less toxic ionic mercury [Hg(II)] and
methane [11, 12] as shown in Fig. 2 (Reaction #1). These
merB plants grow on levels of methylmercury or phen-
ylmercuryacetate (PMA; 0.1–1 lM in agar medium) that
kill native plants. Plants expressing the bacterial merA
gene encoding mercuric ion reductase (Fig. 1, Reaction
#2) detoxify ionic mercury Hg(II) by electrochemically
reducing it to elemental mercury [Hg(0)] [17, 55, 78, 107,
108]. These plants are resistant to levels of ionic mercury
that kill wild-type plants (25–250 lM in sterile medium,
or 100 ppm and even higher concentrations in soil). By
combining transgenic expression of both merA and merB

Fig. 2 Bacterial enzyme
catalyzed reaction used to
engineer plants processing
mercury and arsenic. MerB
(Reaction #1) and MerA
(Reaction #2) catalyze the
detoxification and processing of
methylmercury and ionic
mercury, respectively. When the
genes encoding these enzymes
are expressed in plants they
confer significant levels of
resistance to both toxicants.
Coupling the expression of
MerB and MerA together
produced even greater levels of
processing and resistance to
organomercurials. ArsC
(Reaction #3) and c-ECS
(Reaction #4) catalyze the
electrochemical reduction of
arsenate to arsenite and the
synthesis of a thiol-dipeptide,
c-Glu–Cys, respectively.
Arsenite spontaneously reacts
with thiol-peptides like
c-Glu–Cys (Reaction #5). When
the genes encoding ArsC and
c-ECS are co-expressed in
plants they confer high levels of
arsenic resistance
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(Fig. 2, Reaction #3), plants process organic mercury
even more efficiently and are resistant to 2–10 lM PMA
[10, 11, 13], a level 100 times higher than that which
would kill wild-type plants. Figure 3 shows transgenic
Arabidopsis plants expressing both genes growing as well
on 5 lM PMA as unchallenged controls.

Our research on arsenic processing is at an earlier
stage, and most strategies have only been tested in
Arabidopsis. Arabidopsis plants expressing the bacterial
ArsC gene encoding arsenic reductase (Fig. 2, Reac-
tion #4) from a light-induced promoter can convert
arsenate to arsenite in leaves. Plants expressing the
bacterial c-ECS gene encoding c-glutamylcysteine
synthetase (Fig. 2, Reaction #5) are moderately resis-
tant to arsenate or arsenite in their growth media.
Plants expressing both ArsC and c-ECS trap arsenic
in thiol-peptide complexes in leaves [31] (Fig. 2,
Reaction #6). These plants are resistant to several
times more arsenic in the medium than wild-type
plants, and transport and trap three times more
arsenic in their leaves.

Maximal plant tolerance to some toxicants may
require targeting the products of transgenes to particular
organs, tissues, cells or subcellular compartments. For
example, when aluminum-resistant and -sensitive geno-
types of bean are compared, resistance appears to come
from activities in root border cells, and acts at the root
organ level [82]. In addition, methylmercury is moder-
ately hydrophobic and, as such, partitions efficiently into
membranes—one cause for its high level of neurotoxicity
and phytotoxicity. Targeting the bacterial methylmer-
cury lyase protein MerB for expression in the reticulo-

endothelial system of Arabidopsis provided more
efficient organic mercury processing than did expression
in the cytoplasm [13]. Targeting the merB gene and
MerB protein to tobacco chloroplasts also provided
moderate levels of methylmercury resistance [109].

Rhizosphere activity

Plant roots use root border cells to condition their rhi-
zosphere [53, 106]. Appropriate conditioning of the
rhizosphere is predicted to have a significant impact on
the efficiency of phytoremediation by enhancing several
rhizosphere activities including: (1) stimulating, and
perhaps dictating, the growth of distinct natural micro-
bial populations in the soil [52, 90]; (2) altering the soil
pH; and (3) secreting enzymes and chemical psidero-
phores into the soil [2, 30, 114]. It is our goal to
understand these processes, and, when necessary,
manipulate them genetically to enhance phytoremedia-
tion.

Effects of plant-enhanced microbial populations in
the rhizosphere

Most plants secrete into the soil organic acids such as
citrate, lactate, and malate, and more complex organics
such as flavonoids, that condition their rhizosphere [36,
37, 62]. Each of these chemicals will attract and stimu-
late the growth of distinct microbial populations [27, 65,
118]. Different microbes will have different, and in some
cases opposing, effects on the toxicity and mobility of
various elemental pollutants. For example, these carbon
sources attract and support the growth of microbial
populations such as plant-specific mycorrhiza, which
help mine phosphate and other nutrients from insoluble
soil-bound sources [15, 34, 61, 98, 100]. It is likely that
these same microbial activities will concomitantly mine
the toxic analog of phosphate, arsenate, thus assisting
efforts to extract and remediate arsenic. Similarly,
organics released from plants stimulate the growth of
bacteria that can chemically transform and solubilize
soil-bound nutrients such as Zn(II), Cu(II), and
SO4(�II). Hg(II) is a close chemical analog of Zn(II) and
Cu(II), and thus may be concomitantly released from
soil for plant uptake. Furthermore, many bacterial
species in the plant rhizosphere that dominate in envi-
ronments heavily contaminated with mercury and ar-
senic should contain the mer and ars operons,
respectively [9, 75]. This has been demonstrated in par-
ticular for the broad host range mer operon (containing
both merA and merB genes, Fig. 2, Reactions #1 and 2)
in the mercury-contaminated rhizosphere of alfalfa roots
[113]. These bacterial element-processing systems act
directly on mercury or arsenic and would further sup-
port element mobilization from the soil, into pore water,
and into plant roots. For example, mer bacteria release
Hg(0), which may be taken up by plant roots, electro-

Fig. 3 Arabidopsis plants expressing both MerA and MerB
enzymes are highly resistant to organic mercury. The expression
of both MerA and MerB allows toxic forms of organic mercury like
methylmercury or phenylmercury acetate (PMA) to be converted
via two enzymatic steps to the least toxic form of mercury Hg(0)
(Fig. 1, Reactions#1–3). For example, MerA/MerB plants (bottom
panel left) grow on a high concentration of PMA (5 lM) that kill
MerA plants (bottom panel right) or MerB and wild-type plants
(not shown)
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chemically oxidized by plant enzymes, and trapped as
Hg(II) ([54, 127] and A.C.P. Heaton and R.B. Meagher,
unpublished observations).

In contrast to most proposed positive activities
supporting phytoremediation efforts resulting from
stimulating microbial populations, some microbial
activities may have serious negative consequences. For
example, some organic acids, such as citrate and
lactate, secreted by plants are among the more desired
carbon sources for sulfate-reducing bacteria (SRB) and
other anaerobes. Vitamin-B12-producing anaerobes
and SRBs catalytically produce methylmercury (MeHg)
from Hg(II). MeHg is the most toxic form of mercury
and the only form known to efficiently biomagnify in
the food web. Hence, the secretion of small organic
acids by plants in rich marshes and marine wetlands
drives bacterial methylmercury production. It would be
useful to know which particular organic acids are
secreted by dominant plants of interest (e.g., giant
marsh reeds, water lilies, cattails, Spartina, and parrot
feather) in these environments.

Effects of plant-directed changes in rhizosphere pH

Soil acidification has a significant impact on the uptake
of nutrients and toxic metal ions. In general, acidificat-
ion favors the mobility and uptake of nutrient and toxic
cations including Fe(III), Zn(II), Cu(II), Al(III), and
Hg(II) from the soil. For example, many acidic soils
have toxic levels of aluminum that hinder crop plant
growth, and the effects of pH adjustment on aluminum
toxicity have been studied in some depth [40, 87, 117].
Simple amendments, such as liming soils to neutralize
the acid, are effective at protecting some crop plants.
Conversely, it may be that soil acidification by roots is a
strategy used by some Zn(II) hyperaccumulators to in-
crease toxic element uptake [29, 73]. Furthermore, be-
cause acidification affects microbial populations in the
rhizosphere, acidification can enhance plant-associated
phosphate uptake systems [43].

The remarkable capacity of plants to acidify their soil
is a direct result of the photosynthetic production of
reduced carbon compounds that can be transported
below ground. Once reduced carbon (e.g., sucrose) is
transported below ground, plant roots function hetero-
trophically, converting this chemical resource to elec-
trochemical reducing power, making NADPH and ATP.
These photosynthetically derived sources of electro-
chemical energy and chemical bond energy drive
numerous transport processes in plant roots. Plant ge-
nomes encode a moderately sized family of about ten
plasma membrane proton pumps, and these genes can be
divided into four subfamilies [4]. A number of root-
associated proton ATPases have been characterized in
plants. It is likely that rhizosphere pH can be manipu-
lated genetically to favor toxic element uptake by the
overexpression of appropriate members of these H+

pump families in plant roots.

Direct effects of plant secretion of enzymes and
chemical psiderophores

Plant root, root hair, and, in particular, root cap phys-
iology is not only adapted for the uptake of nutrients,
but for active secretion to condition their soil. The
subcellular structures of root epidermal and border cells
are dominated by membrane-rich Golgi systems and
plasma membrane vesicles involved in macromolecular
transport. As seedlings develop into mature plants, root
secretions increase. Included in these secretions are low
molecular weight phyto-psiderophores such as the sim-
ple organic acids and mugineic acids that release tightly
bound nutrients from the soil matrix [36, 37, 57].
Nutrient starvation is known to induce the synthesis of
some classes of psiderophores [83]. Chemical psidero-
phores chelate various ions of elements like iron, zinc,
copper, cadmium, aluminum, mercury, phosphate, and
arsenate, affecting their solubility and making them
generally more or (in the cases of aluminum) less
available for plant uptake. Hence, they help modulate
the activities of toxic and nutrient elements. Further-
more, there is an established and growing literature
demonstrating the importance of plant macromolecular
transport of proteins into the rhizosphere.

Initial efforts at altering the organic acid secretions of
plants have met with some success at effecting nutrient
and toxic element uptake [8]. In response to aluminum
toxicity, some plant genotypes naturally resistant to
aluminum respond by secreting organic acids, which
render aluminum less mobile to the plant and hence less
toxic when compared to sensitive genotypes of the same
species [92, 129]. The selective advantage of this strategy
is further highlighted by the fact that mutants of
Arabidopsis selected for aluminum resistance secrete
more small organic acid from their roots [69]. These data
suggest a genetic modification strategy for improving
aluminum resistance. Several model and crop plant
species have been genetically engineered to secrete
organic acids such as citrate and malate, creating
aluminum resistance [28, 122].

Plants secrete large numbers of enzymes and proteins
to help condition their soil environment, but the mag-
nitude and complexity of this response to the root
environment is poorly understood. This includes secre-
tion of protein antibiotics (antifungal ribosome inhibi-
tors), peroxidases, protease inhibitors, and stress
response proteins [1, 14, 77, 91]. Plants secrete acid
phosphatases from their roots under low phosphate
conditions to mine the essential element phosphorous
[7, 51, 81]. There are many sources of organic phos-
phorous bound in the soil, but plants cannot necessarily
extract phosphorous efficiently from these complexes.
For an example of how this might be used to effect
phytoremediation of a marginal environment, Arabid-
opsis genetically modified to secrete fungal phytase into
the soil showed improved phosphorous nutrition on low
phosphate medium supplied with phytate [104]. These
data suggest, first, that altering the specific enzymes
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secreted from roots can help remediate phosphate and
nitrogen pollution from farm waste and municipal
waste. Second, they suggest that there may be many
other proteins processing soil-bound nutrients that
could be secreted from roots to alter the availability of
other elemental pollutants like mercury and arsenic.

Element uptake and short distance transport

Plants are autotrophs and, as such, they use solar energy
to power the uptake of 14 or more essential nutrient
elements, as well as vitamin B12, via roots and leaves to
grow and to reproduce. Nutrient uptake can occur via
active or passive transport mechanisms. Passive transport
is based on diffusion and electrochemical gradients, while
active transport requires both membrane-bound trans-
porter proteins and biochemical energy. Active transport
can occur in both directions (influx and efflux) and ismore
selective than passive transport. For example, the nutri-
ents Cu, Fe, N, P, S, and Zn are all taken up by individual
active transport systems, which are induced to higher
levels of expression when these nutrients are limiting [46,
47, 97, 99]. Root epidermal cells, including root hairs,
controlmost of the active uptake of essential nutrients and
the nutrients are transmitted from cell to cell in the root
cortex via the symplast. Vesicles of the endoplasmic
reticulum may penetrate from one cell through plasmo-
desmata to another cell to aid in this transport process
until these nutrients are released to the endodermis of the
vascular cylinder for long-distance transport. Uptake of
nearly all nutrients is known to be highly regulated, and
this regulation is best seen by comparing root uptake
between plants grown with and without the nutrient in
question. After brief periods of nutrient starvation for
K+, Zn(II), Fe(II), or phosphate, for example, plant
roots actively take these nutrients up at much higher rates
than roots that have not been nutrient starved [21, 39].
Major changes occur in the root epidermis during nutrient
starvation [112]. It was easily inferred from such data that
hundreds of highly regulated genes control nutrient
uptake in plants. In those particular uptake systems that
have been best studied, such as those for phosphate and
iron, high affinity transporters are relatively inactive, or
even undetectable, in roots until plants are starved for
these nutrients. After starvation, families of high affinity
iron and phosphate transporter genes are turned on and
the transporter proteins are synthesized at high levels [35,
63, 86, 126].

With the completion of the Arabidopsis genome
sequence it became clear that, among the 26,000 genes in
this minimal plant genome, more than 1,400 encoded
plasma membrane transporters that could manage the
uptake of these required elements [3, 20]. Undoubtedly,
these diverse transporters evolved initially to bring
essential nutrients into plants and translocate them to
aboveground organs. Plant hyperaccumulators may
have recruited some of these transporters to enhance the
uptake of what would normally be toxic levels of Zn(II),

Ni(II), Cu(II), and As(III) [5, 110]. A logical approach
to isolating the appropriate nutrient pumps that might
be manipulated genetically is either to identify those that
have evolved to manage toxic elements in hyperaccu-
mulators or to identify the appropriate nutrient pump
with genetics. By examining the various nutrients as
grouped by their chemical properties in the periodic
table we can identify the closest chemical relatives of
toxic elements. By this rationale, we anticipate that zinc,
copper, or iron transporters will facilitate mercury
transport, and that phosphate transporters will facilitate
arsenate transport. Our current research is focused on
identifying which transporters have these activities. In
future we hope to modify their levels of expression and
specific activities to enhance plant uptake of mercury
and arsenic.

Transformation of elements to their most mobile species

Most phytoremediation strategies for elemental pollu-
tants rely on mobilizing the toxicant to be concentrated
in aboveground tissue for later harvest. A few plants,
such as the Chinese Break Fern, which hyperaccumu-
lates arsenic, may already have adopted this strategy by
mobilizing arsenate in its vascular system and concen-
trating arsenite in its fronds [74]. Large numbers of
nickel, cadmium, and zinc hyperaccumulators mobilize
these elements from soil to aboveground organs [5, 102].
However, most native plants trap reactive elemental
pollutants in their roots, presumably protecting valuable
photosynthetic machinery and reproductive organs from
their toxic effects. For example, arsenate that is inad-
vertently taken up by plants is reduced in roots to
arsenite, and this highly thiol-reactive species stays
bound in roots. Plant roots have a substantial endoge-
nous activity to reduce arsenate to arsenite [31, 94].
Similarly, most mercury that is taken up as Hg(II) re-
mains bound to root tissues, and most metallic Hg(0)
taken up by leaves or roots is reduced to Hg(II) and
remains bound [54, 56, 127].

Engineered phytoremediation strategies will have to
counter these natural processes. For example, we have
knocked down endogenous arsenic reductase activities
in roots to allow the more mobile arsenate to more
readily move up the plant xylem (O.P. Dhankher and
R.B. Meagher, unpublished observations). Similarly, in
a recently explored strategy for the phytoremediation of
mercury, we transformed Hg(II) to Hg(0), [54, R. Balish,
T. Kim, and R. B. Meagher, unpublished observa-
tions]thus allowing soluble Hg(0) to move up the tran-
spiration stream in these plants.

Long-distance translocation of elements through
the vascular system

Long-distance transport of minerals from roots to
aboveground parts of the plant takes place through the

508



vascular system of xylem elements. Most of the xylem is
composed of interconnected non-living xylem vessels,
which move water and solutes rapidly from roots to the
top of the plant. These vessels may be interrupted by
non-living tracheides that can present a considerable
resistance to the volume of flow, but allow better
transfer to phloem and better distribution of elemental
solutes to the plant. While most of this upward
movement is driven by transpiration pulling water to
the top of the plant [121], the transport of nutrients
requires active loading of nutrients into the root xylem
and active unloading of nutrients from xylem to other
cells and the phloem system in aboveground parts of
the plant [76, 89, 116].

The natural processes involved in long-distance
transport of nutrients undoubtedly require hundreds of
genes, but because of the experimental difficulties in
definitively demonstrating a connection to long-distance
transport, only a few specific genes have been identified
or even implicated [42, 131]. For example, genes that
appear to be involved in the long-distance transport of
amino acids and nitrogen [38, 58], purines [16], and
sodium [115], have been reported. The Arabidopsis
PHO1 gene encodes one of the transporters that loads
phosphate into the xylem [49, 128]. Perhaps the best-
studied system for long-distance transport is that for the
movement of potassium, an essential nutrient found at
high levels in all cells. Many factors are involved,
including ATPase transporters, protein kinases and
phosphatases, G proteins, and syntaxins [18]. Many of
these systems have implications for the movement of
toxic elements.

Some currently studied long-distance transport sys-
tems have obvious implications for phytoremediation.
Nicotianamine (NA) is an endogenous chelator of met-
als such as iron and a precursor of other nutrient psi-
derophores. Upon iron starvation, the various NA
synthase genes responsible for production of NA are
turned on or off in leaves and roots, presumably to
enhance xylem mobility of iron [59]. High and low
affinity phosphate transporters involved in long-distance
transport could help in the upward movement of
arsenate [63, 98, 120]. Perhaps PHO1, or related phos-
phate-loading proteins, could be used to enhance xylem
loading of arsenate. Systems for the long-distance
transport of iron, zinc, and copper could be enhanced to
increase the uptake of mercury.

Aboveground transformation to the best-managed
species

The goal of many phytoremediation technologies is to
store the elemental pollutant at high concentration
aboveground to make it economically worthwhile to
harvest and store the contaminated plant material itself,
or alternatively, to further concentrate elements from
harvested plant material. Once a toxic element has been
transported aboveground, its continued concentration

and storage may require transformation into a more or
less reactive chemical species that favors its accumula-
tion. For example, among the first steps in testing an
engineered arsenic phytoremediation strategy, we used
the natural transport of arsenate, a phosphate analog, to
aboveground tissues. We electrochemically transformed
arsenate to arsenite with an engineered bacterial arse-
nate reductase gene expressed in leaves [31]. Arsenite is a
much more chemically reactive species than arsenate
that can bond with relative stability to various thiol-
peptides, and hence, in this reduced electrochemical
state, is stored at higher levels compared to arsenate. In
this study, we overexpressed bacterial c-glutamylcyste-
ine synthetase to generate a thiol-peptide sink for arse-
nite. It appears that the Chinese fern, Pteris cretica, a
natural hyperaccumulator of arsenic, also reduces arse-
nate to arsenite but does so for both transport and
aboveground storage in thiol-complexes [96, 130]. Sim-
ilarly, we have tested strategies in which mercury is
transported as Hg(0) aboveground, where high levels of
native peroxidases and catylases then oxidize Hg(0) to
Hg(II) [54]. Hg(II) is highly reactive and forms partic-
ularly stable chemical products with reduced thiols;
these products can be stored until harvest.

Chemical sinks for toxic element accumulation

With the exception of exotic plant hyperaccumulators,
it is unlikely that many fast-growing native plants will
naturally produce sufficient quantities of the appropri-
ate low molecular weight chelators to act as sinks in
which to store large quantities of toxic elemental pol-
lutants. The goal of most element hyperaccumulator
strategies is to find or create fast-growing plants with
deep root systems that concentrate elemental pollutants
to 0.1–2% of the dry weight of the aboveground plant
material. These high levels are needed to make har-
vesting and processing plant material economically
feasible. Indeed, intensive efforts have focused on
identifying and understanding the chemical sinks that
natural hyperaccumulators use to store large quantities
of zinc, cadmium, and nickel. As mentioned above,
organic acids and amino acids have been implicated in
the chelation of toxic metal ions for several hyperac-
cumulators. For example, hyperaccumulation of nickel
in Alyssum lesbiacum is associated with order of mag-
nitude increases in free histidine [64, 67], but histidine
does not necessarily play a role in many other nickel
hyperaccumulators [93]. Similarly, zinc has been found
in phosphate, citrate, and malate complexes [111] that
may be involved in its storage. We and others are
examining increased levels of cysteine, c-glutamylcy-
steine, glutathione, and phytochelatins to act as sinks
for Hg(II) and arsenite. In our first efforts, focused on
trapping arsenic in leaves, we increased aboveground
levels of this toxicant significantly by overexpressing
c-ECS constitutively and ArsC in the leaves of
Arabidopsis [31] (Fig. 2, Reactions f#4–6).
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Physical reservoirs for toxic elements

Large aboveground reservoirs are needed if toxic ele-
mental pollutants are to accumulate to high levels for
later harvest. A few logical reservoirs for storage are: (1)
vacuoles, where plants already store a variety of waste
products; (2) the non-living vascular tissues of the xylem;
and (3) trichomes:

1. Vacuolar reservoirs In yeast, which has a genome
four times smaller than the
simplest higher plant genome,
there appear to be hundreds of
genes devoted to vacuolar
transport [105]. It can be
anticipated that plants will
contain even more complex
arrays of genes devoted to
vacuolar transport. There are
at least 130 Arabidopsis genes
encoding the ABC transporter
family, a large number of
which encode vacuolar trans-
porters of toxins and glutathi-
one conjugates of toxins [71,
72, 101]. Undoubtedly, some of
these transporters shuttle con-
jugates of toxic elements like
cadmium into plant vacuoles as
has already been described in
yeast [70]. The Arabidopsis At-
MRP3 gene complements
mutations in the yeast ycf1
gene, which encodes a cad-
mium and toxic organic chem-
ical ABC transporter [123]. It is
likely that plants will have
many transporters with related
activities.

2. Vascular reservoirs Complex carbohydrates, such
as cellulose and hemicellulose,
and lignan, bind metal ions
and make up the bulk of the
dead cells in the vascular xylem
and phloem [84].

3. Trichome reservoirs Cadmium and zinc have been
found at high concentrations
in the trichomes of some hy-
peraccumulators [19, 68].

It is hoped that, in the near future, we will know
enough about distinct plant transporters to manipulate
the localization of mercury and arsenic to these various
compartments.
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